jueves, 6 de noviembre de 2014

Condiciones de continuidad


Una función continua es aquella cuya regla de correspondencia asigna incrementos pequeños en la variable dependiente a pequeños incrementos de los elementos del dominio de dicha función, es decir, , y usando la expresión Δy + y = f(Δx + x), queda donde en este caso, f(x) = y. Ello quiere decir que , y si este último límite existe significa en consecuencia por un teorema de límites (un límite existe si y sólo si los dos límites laterales existen y son iguales) que toda función f(x) que cumpla con
es continua en el punto a.
Condición no recíproca 
La relación no funciona a la inversa: el que una función sea continua no garantiza su derivabilidad. Es posible que los límites laterales sean equivalentes pero las derivadas laterales no; en este caso la función presenta un punto anguloso en dicho punto.
Un ejemplo puede ser la función valor absoluto (también llamada módulo) en el punto . Dicha función es equivalente a la función partida 
Para valores infinitamente cercanos a 0, por ambas ramas, el resultado tiende a 0. Y el resultado en el punto 0 es también 0, por lo tanto es continua. Sin embargo, las derivadas resultan 
Cuando vale 0, las derivadas laterales dan resultados diferentes. Por lo tanto, no existe derivada en el punto, a pesar de que sea continuo.
De manera informal, si el gráfico de la función tiene puntas agudas, se interrumpe o tiene saltos, no es derivable.

Limites

Los límites son la herramienta principal sobre la que construimos el cálculo. Muchas veces, una función puede no estar definida en un punto, pero podemos pensar a qué valor se aproxima la función mientras se acerca más y más a ese punto (esto es el límite). Otras ocasiones, la función está definida en un punto, pero puede aproximarse a un límite diferente. Hay muchas, muchas veces donde el valor de la función es el mismo que el del límite en el punto. De cualquier manera, esto es una poderosa herramienta cuando comenzamos a pensar en la pendiente de una recta tangente a una curva. Si tienes conocimientos previos en álgebra (gráficas y funciones en particular)

Límites de una función:
Sea f una función. Estamos interesados en el valor de la función f(x) cuando x se aproxima a un valor c, pero no es necesariamente igual a c. Esto es, ¿según x se aproxima más y más a c (pero x no es igual a c) se acerca f(x) más y más a un valor L? Si la respuesta es si, decimos que "f(x) tiende a L según x se aproxima a c", y se representa en forma simbólica de la forma:
La frase "x se aproxima a c" o "x tiende a c" significa que independientemente de lo próximo que esté x del valor c , existe siempre otro valor de x (distinto de c) en el dominio de f está aún más próximo a c .
Una función no puede tender a dos límites distintos a la vez. Esto es, si el límite de una función existe, es único.

En general calcular el límite de una función "normal", cuando x tiende a un número real, es fácil, basta aplicar las reglas de cálculo indicadas, sustituyendo la variable independiente por el valor real al que la x tiende.
No obstante, en ocasiones, nos podemos encontrar con sorpresas, por ejemplo, que la función no esté definida para el valor en el que queremos calcular el límite . Esta situación, es habitual, cuando el límite lo queremos calcular cuando x tiende a infinito.
Caso cero sobre cero:


La función no está determinada para x = 1, la razón es que el denominador se hace 0. Este tipo de indeterminaciones ocurre, cuando en el numerador y el denominador de la función, existe algún factor que se hace 0, este factor suele ser del tipo : x - valor para el que queremos calcular el límite. Si logramos eliminar, este factor del numerador y del denominador, se obtiene otra función , que toma los mismos valores en todos los puntos que no sean el punto en cuestión.
En este caso concreto, el punto es : x = 1.
La nueva función permite obtener los valores en las proximidades del punto de la indeterminación, que son los que permiten calcular el límite. En el caso concreto que nos ocupa, sería:

Cuando x crece indefinidamente, esta función es un cociente de dos cantidades que crecen indefinidamente. Se puede plantear la duda, de que si al crecer x indefinidamente, también lo hará :



Caso infinito sobre infinito

puesto que sería la diferencia de dos cantidades que crecen indefinidamente, que es una indeterminación. Sacando factor común se transforma esta expresión en otra equivalente:


que crece indefinidamente, puesto que una cantidad que crece indefinidamente sigue creciendo indefinidamente aunque le restemos una cantidad constante y el producto de dos cantidades que crecen indefinidamente, también crece indefinidamente. Lo mismo ocurre con el denominador.




Como, al dividir numerador y denominador por una misma cantidad, distinta de 0, el valor de la fracción no cambia, sigue que:



Esta propiedad nos permite resolver este tipo de indeterminaciones. Se divide numerador y denominador por x, elevado al mayor de los expontentes con los que aparece en la función :





Hay un caso trivial, que ya hemos visto, sea:


Es la diferencia de dos cantidades que crecen indefinidamente, pero como :

Y a una cantidad que crece indefinidamente, le quitamos una cantidad constante y sigue creciendo indefinidamente y el producto de dos cantidades que crece indefinidamente, crece indefinidamente, está claro que:
Veamos ahora otra indeterminación de este tipo, pero algo más complicada:


Como en este caso no se puede sacar factor común, para eliminar la indeterminación, multiplicamos y dividimos la expresión por su conjugado.El conjugado de una expresión, que es la diferencia de dos cantidades que crecen indefinidamente, es otra igual, excepto que en lugar de una diferencia, es una suma de dos cantidades que crecen indefinidamente. En este caso, será:

Aparece este tipo de indeterminación cuando aparecen dos funciones tales que: