martes, 26 de agosto de 2014

Punto de vista en la vida diara

La importancia del Cálculo es muy grande, ya que la ciencia y la tecnología moderna sería imposibles llevarse acabo sin el. Es muy necesaria en nuestra vida diaria esto consiste en el estudio de los incrementos en las variables, pendientes de curvas, valores máximo y mínimo de funciones, y la determinación de longitudes, áreas y volúmenes, su uso es muy extenso sobre todo en ciencias y ingeniera.


En la actualidad, y desde hace siglos, las matemáticas han sido algo esencial para la vida, y así mismo el desarrollo del ser humano, y de la sociedad en conjunto.





Ejemplos de aplicación en cálculo

En la ingeniería automotriz: suponiendo que diseñe una pieza para la caja de transmisión que hace que el carro corra más, esa pieza tiene una forma irregular y por ello no podremos calcular su volumen por medio de las formas básicas como el de un cubo o pirámide, como sabemos toda empresa antes de comenzar a fabricar la pieza debe saber el volumen que tiene, la cantidad de material, peso y la densidad del mismo para hacer una estimación de forma de saber que tanto se invertirá en cada pieza, bueno el calculo integral nos permite obtener el volumen de esa pieza, la densidad y el peso, mediante calculo multivariable (lo mismo que calculo integral pero con varias variables de esta forma podre saber todos estos datos sin necesidad de hacer la pieza, de forma rápida y barata.


Otro ejemplo el sistema de posicionamiento global (gps) : 

El gps nos ayuda a encontrar la localización de un objeto que tenga instalado el sistema con un margen de error de un metro a al redonda, pero este tan bajo margen de error se debe a que gracias a la relatividad de Einsten en donde para calcular la velocidad con que tarda en viajar una señal por medio del aire esta dada por una función descrita mediante el calculo integral, claro cabe recalcar que Einsten para calcular la velocidad de la luz no utiliza el calculo integral pero en los nuevos remo delaciones esta formula se le aplico el calculo integral ya que se sabe que los sistemas tiene un compartimento de la sumatoria de Riemman y por ente se le aplica el calculo integral para obtener con una precisión de la nienecima parte sobre el retardo de una señal que viaja en el aire.velocidad de una señal a través de la red y retardos de entrega de paquetes: otra gran aplicación es para poder calcular la velocidad de una señal por un cable en una red lan, así como también el tiempo de entrega de paquetes de un ordenador a otro.
En fin si no existiera el calculo integral no existirá muchas de las cosas que tenemos o al menos no con la precisión con la que conocemos (motores, ropa, microprocesadores, etc.)


Aportes de Newton y Leibniz

Las aportaciones de Leibniz y Newton fueron las siguientes:

                                             Isaac Newton                                Leibniz

De 1667 a 1669 emprendió investigaciones sobre óptica y fue elegido fellow del Trinity College. En 1669 su mentor, Isaac Barrow, renunció a su Cátedra Lucasiana de matemática, puesto en el que Newton le sucedería hasta 1696. El mismo año envió a John Collins, por medio de Barrow, su “Analysis per aequationes número terminorum infinitos”. Para Newton, este manuscrito representa la introducción a un potente método general, que desarrollaría más tarde: su cálculo diferencial e integral.
Newton había descubierto los principios de su cálculo diferencial e integral hacia 1665-1666 y, durante el decenio siguiente, elaboró al menos tres enfoques diferentes de su nuevo análisis.
Newton y Leibniz protagonizaron una agria polémica sobre la autoría del desarrollo de esta rama de la matemática. Los historiadores de la ciencia consideran que ambos desarrollaron el cálculo independientemente, si bien la notación de Leibniz era mejor y la formulación de Newton se aplicaba mejor a problemas prácticos. La polémica dividió aún más a los matemáticos británicos y continentales, sin embargo esta separación no fue tan profunda como para que Newton y Leibniz dejaran de intercambiar resultados.
Newton abordó el desarrollo del cálculo a partir de la geometría analítica desarrollando un enfoque geométrico y analítico de las derivadas matemáticas aplicadas sobre curvas definidas a través de ecuaciones. Newton también buscaba cómo cuadrar distintas curvas, y la relación entre la cuadratura y la teoría de tangentes.
Después de los estudios de Roberval, Newton se percató de que el método de tangentes podía utilizarse para obtener las velocidades instantáneas de una trayectoria conocida. En sus primeras investigaciones Newton lidia únicamente con problemas geométricos, como encontrar tangentes, curvaturas y áreas utilizando como base matemática la geometría analítica de Descartes. No obstante, con el afán de separar su teoría de la de Descartes, comenzó a trabajar únicamente con las ecuaciones y sus variables sin necesidad de recurrir al sistema cartesiano.
Después de 1666 Newton abandonó sus trabajos matemáticos sintiéndose interesado cada vez más por el estudio de la naturaleza y la creación de sus Principia.
Aunque la noción matemática de función estaba implícita en la trigonometría y las tablas logarítmicas, las cuales ya existían en sus tiempos, Leibniz fue el primero, en 1692 y 1694, en emplearlas explícitamente para denotar alguno de los varios conceptos geométricos derivados de una curva, tales como abscisa, ordenada, tangente, cuerda y perpendicular. En el siglo XVIII, el concepto de “función” perdió estas asociaciones meramente geométricas.
Leibniz fue el primero en ver que los coeficientes de un sistema de ecuaciones lineales podían ser organizados en un arreglo, ahora conocido como matriz, el cual podía ser manipulado para encontrar la solución del sistema, si la hubiera. Este método fue conocido más tarde como “Eliminación Gaussiana”. Leibniz también hizo aportes en el campo del álgebra booleana y la lógica simbólica.
Cálculo infinitesimal
La invención del cálculo infinitesimal es atribuida tanto a Leibniz como a Newton. De acuerdo con los cuadernos de Leibniz, el 11 de noviembre de 1675 tuvo lugar un acontecimiento fundamental, ese día empleó por primera vez el cálculo integral para encontrar el área bajo la curva de una función y=f(x). Leibniz introdujo varias notaciones usadas en la actualidad, tal como, por ejemplo, el signo “integral” ∫, que representa una S alargada, derivado del latín “summa”, y la letra “d” para referirse a los “diferenciales”, del latín “differentia”. Esta ingeniosa y sugerente notación para el cálculo es probablemente su legado matemático más perdurable. Leibniz no publicó nada acerca de su Calculus hasta 1684. La regla del producto del cálculo diferencial es aún denominada “regla de Leibniz para la derivación de un producto”. Además, el teorema que dice cuándo y cómo diferenciar bajo el símbolo integral, se llama la “regla de Leibniz para la derivación de una integral”.
Desde 1711 hasta su muerte, la vida de Leibniz estuvo emponzoñada con una larga disputa con John Keill, Newton y otros sobre si había inventado el cálculo independientemente de Newton, o si meramente había inventado otra notación para las ideas de Newton.
Leibniz pasó entonces el resto de su vida tratando de demostrar que no había plagiado las ideas de Newton.
Actualmente se emplea la notación del cálculo creada por Leibniz, no la de Newton.
Si bien las reglas de operación y las principales relaciones entre ellas quedaron claramente establecidas con Newton y Leibniz, y con ello salía a la luz una nueva materia el Cálculo todavía quedaba mucho por hacer.

Sus fundamentos eran imprecisos, no solamente para sus autores, sino para los estudiosos de las matemáticas que les sucedieron durante ese tiempo se buscó pasar de la justificación basada en el pragmatismo dado por la consistencia de los resultados obtenidos, con la visión del mundo físico que ofrecía la geometría hacia una explicación que fuera más allá de lo intuitivamente plausible.

Esto no fue posible hasta en el que el éxito en el desarrollo del formalismo algebraico dio lugar al impulso de sistemas matemáticos independientes de los postulados afines a la experiencia sensorial.

Fue hasta entonces que el Cálculo tuvo manera de adoptar sus propias premisas y construir sus propias definiciones sujetas solamente a los requerimientos de su consistencia interna.

Queremos insistir como se pretende resaltar la gran cantidad de aportaciones que contribuyeron al nacimiento del Cálculo y hacer notar que el desarrollo de sus conceptos principales, la derivada y la integral, tuvieron una larga evolución; primero para llegar a establecerse como operaciones inversas entre si con sus reglas bien definidas, y luego para evolucionar en sus fundamentos desde argumentaciones asentadas en la experiencia sensible, hasta su elaboración final como abstracciones matemáticas definidas en términos de lógica formal mediante la idea de límite de una serie infinita. Así, la derivada y la integral están en el análisis matemático moderno definidas sintéticamente en función de consideraciones ordinales, y no en función de aquellas consideraciones de variación física y cantidades geométrica mente continuas que les dieron origen.

Antecedentes del cálculo

Los antecedentes de procedimiento de cálculo, como algoritmo, se encuentran en los que utilizaron los geómetras griegos, Eudoxo en particular, en el sentido de llegar por aproximación de restos cada vez más pequeños, a una medida de figuras curvas; así como Diofanto precursor del álgebra.


Se considera que Arquímedes fue uno de los matemáticos más grandes de la antigüedad y, en general, de toda la historia. Usó el método exhaustivo para calcular el área bajo el arco de una parábola con el sumatorio de una serie infinita, y dio una aproximación extremadamente precisa del número Pi.También definió la espiral que lleva su nombre, fórmulas para los volúmenes de las superficies de revolución y un ingenioso sistema para expresar números muy largos.
La consideración del cálculo como una forma de razonamiento abstracto aplicado en todos los ámbitos del conocimiento se debe a Aristóteles, quien en sus escritos lógicos fue el primero en formalizar y simbolizar los tipos de razonamientos categóricos (silogismos). Este trabajo sería completado más tarde por los estoicos, los megáricos, la Escolástica.
Los algoritmos actuales del cálculo aritmético, utilizados universalmente, son fruto de un largo proceso histórico de vital importancia son las aportaciones de Muhammad ibn al-Juarismi en el siglo IX.
En el siglo XIII, Fibonacci introduce en Europa la representación de los números arábigos del sistema decimal. Se introdujo el 0, ya de antiguo conocido en la India y se construye definitivamente el sistema decimal de diez cifras con valor posicional. La escritura antigua de números en Babilonia, en Egipto, en Grecia o en Roma, hacía muy difícil un procedimiento mecánico de cálculo.
El sistema decimal fue muy importante para el desarrollo de la contabilidad de los comerciantes de la Baja Edad Media, en los inicios del capitalismo.
El concepto de función por tablas ya era practicado de antiguo pero adquirió especial importancia en la Universidad de Oxford en el siglo XIV. La idea de un lenguaje o algoritmo capaz de determinar todas las verdades, incluidas las de la fe, aparecen en el intento de Raimundo Lulio en su Ars Magna
A fin de lograr una operatividad mecánica se confeccionaban unas tablas a partir de las cuales se podía generar un algoritmo prácticamente mecánico. Este sistema de tablas ha perdurado en algunas operaciones durante siglos, como las tablas de logaritmos, o las funciones trigonométricas; las tablas venían a ser como la calculadora de hoy día; un instrumento imprescindible de cálculo. Las amortizaciones de los créditos en los bancos, por ejemplo, se calculaban a partir de tablas elementales hasta que se produjo la aplicación de la informática en el tercer tercio del siglo XX.
A finales de la Edad Media la discusión entre los partidarios del ábaco y los partidarios del algoritmo se decantó claramente por estos últimos. De especial importancia es la creación del sistema contable por partida doble recomendado por Luca Pacioli fundamental para el progreso del capitalismo en el Renacimiento.